Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert pleiotropic effects on vascular cells independent of lowering plasma cholesterol. To elucidate the molecular mechanisms involved in these effects, we investigated the impact of statins on production of reactive oxygen species (ROS) in rat aortic vascular smooth muscle cells (VSMC). Exposure of VSMC to angiotensin II caused production of ROS via angiotensin AT1 receptor activation. Pretreatment with atorvastatin inhibited angiotensin II-induced ROS production. Atorvastatin decreased AT1 receptor mRNA levels in a time- and concentration-dependent manner and consistently reduced AT1 receptor density. L-Mevalonate but not hydroxy-cholesterol reversed the inhibitory effect of atorvastatin on AT1 receptor transcript levels. Inhibition of geranylgeranyl-transferase but not of farnesyl-transferase mimicked the effect of atorvastatin on AT1 receptor gene expression. Atorvastatin did not decrease AT1 receptor gene transcription but did reduce the half-life of the AT1 receptor mRNA. AT1 receptor activation by angiotensin II increased the expression of the GTPase rac1, enhanced rac1 GTP-binding activity, and increased the geranylgeranyl-dependent translocation of rac1 to the cell membrane. In contrast, statins inhibited rac1 activity and membrane translocation. Consequently, specific inhibition of rac1 with Clostridium sordellii lethal toxin blocked angiotensin II-induced production of free radicals. Finally, treatment of rats with atorvastatin caused down-regulation of aortic AT1 receptor mRNA expression and reduced aortic superoxide production in vivo. Cholesterol-independent down-regulation of AT1 receptor gene expression and inhibition of rac1, leading to decreased ROS production, demonstrates a novel regulatory mechanism of statins that may contribute to the beneficial effects of these drugs beyond lowering of plasma cholesterol.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.