Abstract
GSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.