Abstract

Cell adhesion to the extracellular matrix through integrin receptors can activate signaling cascades within the cell. Focal adhesion kinase (FAK) is a protein tyrosine kinase activated by integrin adhesion. The role of FAK within the cell is not clear, although evidence suggests roles in cell motility or the regulation of adhesion-dependent cell survival. We have treated primary cultures of chick embryo cells with antisense oligonucleotides to FAK to reduce the level of FAK protein expression. Levels of the related protein, proline-rich tyrosine kinase 2 (Pyk2) and the FAK substrate paxillin, were unaffected by the addition of oligonucleotides, whereas FAK expression was reduced by 70%. Levels of apoptotic cell death did not significantly increase after the addition of oligonucleotides. However, there was a change in the distribution of focal adhesion sites from a uniformly distributed pattern to a mainly peripheral pattern. This was accompanied by a loss of stress fibers and an increase in the peripheral actin cytoskeleton, as the cells became rounded. These results suggest that in these early embryonic cells, FAK expression regulates the arrangement of focal adhesions and the cytoskeleton that result in a motile phenotype, but that FAK does not appear to regulate apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call