Abstract

The effect of Fe2+ on the performance of sulfur-driven autotrophic denitrification (SDAD) using S0 as electron donor was evaluated. The experimental results showed that as initial Fe2+ concentration increased, nitrate (NO3–) removal rate significantly decreased. Fe2+ ion (0.1 mM and 1 Mm) inhibited SDAD rate (approximately 10% and 50%) and resulted in an accumulation of nitrite (NO2–) and nitrous oxide (N2O). The relative abundance of Thiobacillus was positively correlated with NO3– removal rate, whereas negatively correlated with Fe2+ concentration, suggesting that Fe2+ inhibited the sulfur-oxidizing denitrifying bacteria. Moreover, the abundance of bacterial 16S rRNA, denitrifying genes (narG, nirS, nirK and nosZ) and sulfur-oxidizing genes (soxB and dsrA) decreased with the increase of Fe2+ concentration, among them nosZ and soxB were the most sensitive genes to Fe2+, and nosZ/narG, soxB/(bacterial 16S rRNA) and soxB/nirK had influence on NO3– removal rate, while nosZ/(bacterial 16S rRNA) affected N2O accumulation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.