Abstract

While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1. In vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices. Capsaicin (1 µM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 µM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 µM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 µM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice. These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.