Abstract

The pentane extract of the Peruvian plant, Lepidium meyenii (Maca), has been demonstrated to possess neuroprotective activity in previous in vitro and in vivo studies (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77-85, 2010; Pino-Figueroa et al. in Am J Neuroprot Neuroregener 3:87-92, 2011). This extract contains a number of macamides that may act on the endocannabinoid system (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77-85, 2010; Pino-Figueroa et al., 2011; Dini et al. in Food Chem 49:347-349, 1994). The aim of this study was to characterize the inhibitory activity of four of these maccamides (N-benzylstearamide, N-benzyloleamide, N-benzyloctadeca-9Z,12Z-dienamide, and N-benzyloctadeca-9Z,12Z,15Z-trienamide) on fatty acid amide hydrolase (FAAH), an enzyme that is responsible for endocannabinoid degradation in the nervous system (Kumar et al. in Anaesthesia 56:1059-1068, 2001). The four compounds were tested at concentrations between 1 and 100μM, utilizing an FAAH inhibitor screening assay. The results demonstrated concentration-dependent FAAH inhibitory activities for the four macamides tested. N-Benzyloctadeca-9Z,12Z-dienamide demonstrated the highest FAAH inhibitory activity whereas N-benzylstearamide had the lowest inhibitory activity. In addition, N-benzylstearamide, N-benzyloleamide, and N-benzyloctadeca-9Z,12Z-dienamide demonstrated time-dependent inhibition when tested after a pre-incubation period, indicating that the mechanism of inhibition for these compounds most likely is irreversible. Of interest, unsaturation in the fatty acid moiety resulted in greater FAAH inhibitory activity. LC/MS/MS analysis demonstrated that FAAH was able to hydrolyze N-benzyloctadeca-9Z,12Z-dienamide, suggesting that N-benzyloctadeca-9Z,12Z-dienamide is also a slow substrate for FAAH. These results provide useful information about the mechanism of action of Lepidium meyenii and may help with the development of new compounds with FAAH inhibitory or modulatory activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.