Abstract

Although the genus Trichoderma is widely used as a biocontrol agent in crops, little is known about its potential impact on the human immune system. In mice, our group has shown that exposition to T. asperelloides spores lead to reduced neutrophil counts in the peripheral blood and in the peritoneal cavity. In addition, T. stromaticum spores produced an inflammatory infiltrate on mice lungs, reducing the levels of IFN-γ and IL-10 cytokines, reactive oxygen species, and receptors of microbial patterns. Here we demonstrate that the interaction of human peripheral neutrophils with T. stromaticum spores also leads to a reduced release of neutrophil extracellular traps (NETs) after induction with the NET-inducer agent phorbol 12-myristate 13-acetate. This interaction also reduced the expression levels of multiple microRNAs, such as miR-221, miR-222, miR-223 and miR-27a, as well as genes related to NETs, such as ELANE, MPO and PADI4. Furthermore, T. stromaticum spores affected the expression of the genes SOCS3, TLR4, CSNK2A1, GSDMD, and NFFKBIA, related to the activation of inflammatory immune responses in neutrophils. Overall, our results suggest T. stromaticum as a potential NET inhibitor and as an immunomodulatory agent. Since this fungus is used as biocontrol in crops, our findings point to the importance of advancing our knowledge on the effects of this bioagent on the human immune system. Finally, the study of the active compounds produced by the fungus is also important for the prospection of new drugs that could be used to block the exacerbation of inflammatory immune responses present in several human diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call