Abstract

New analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized with modified 5'-phosphate moieties by replacement of -O with -H, -CH3, or -NH2. Additional analogues were synthesized with 8-methyl- or 8-aminoguanine base substitutions or ring-opened ribose (2',3'-diol). These compounds were analyzed by 1H and 31P NMR for solution conformation. In addition, they were also analyzed for biological activity as analogues of mRNA 5'-caps by competition as inhibitors of translation in reticulocyte lysate. Substitution of oxygen on the 5'-monophosphate moiety by -H and -CH3 diminished the activity of the cap analogue as a competitive inhibitor; however, replacement by -NH2 did not diminish the activity of the analogue as an inhibitor. It was inferred from this result that cap binding proteins require a hydrogen bond acceptor as opposed to having an exclusive requirement for a second anionic group on the alpha-phosphate moiety. Inhibition results obtained with C8-substituted m7GMP analogues indicated that the 8-amino derivative was a better inhibitor than the 8-methyl derivative of m7GMP. The former is primarily anti whereas the latter is primarily syn with respect to glycosidic bond conformation. This result further supports the model that the anti conformation is the preferred form of the cap structure for interaction with cap binding proteins. The 2',3'-diol derivative of m7GMP was inactive as an inhibitor of translation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call