Abstract

We have designed, synthesized and evaluated homotryptophan analogues as possible mechanism-based inhibitors for Escherichia coli tryptophan indole-lyase (tryptophanase, TIL, E.C. 4.1.99.1). As a quinonoid structure is an intermediate in the reaction mechanism of TIL, we anticipated that homologation of the physiological substrate, l-Trp would provide analogues resembling the transition state for β-elimination, and potentially inhibit TIL. Our results demonstrate that l-homotryptophan (1a) is a moderate competitive inhibitor of TIL, with Ki=67μM, whereas l-bishomotryptophan (1b) displays more potent inhibition, with Ki=4.7μM. Pre-steady-state kinetics indicated the formation of an external aldimine and quinonoid with 1a, but only the formation of an external aldimine for 1b, suggesting differences in the inhibition mechanism. These results demonstrate that formation of a quinonoid complex is not required for strong inhibition. In addition, the Trp analogues were evaluated as inhibitors of Salmonella typhimurium Trp synthase. Our results indicate that compound 1b is at least 25-fold more selective toward TIL than Trp synthase. We report that compound 1b is comparable to the most potent inhibitor previously reported, while displaying high selectivity for TIL. Thus, 1b is a potential lead for the development of novel antibacterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.