Abstract
The ATP-dependent transformation of crenated white human erythrocyte ghosts into smoothed disc and cup forms is inhibited by the soluble 40-45-kilodalton (kDa) cytoplasmic portion of the major transmembrane protein, band 3. The band 3 fragment was prepared by chymotryptic treatment of inverted vesicles stripped of peripheral proteins. When present at greater than or equal to 0.2 mg per mg membrane protein (ie, greater than or equal to 2 mol fragment per mol endogenous band 3), the fragment significantly reduced the rate of shape change but did not alter the proportion of membranes that were ultimately converted into smoothed forms (greater than 90%). The inhibitory activity of the fragment could not be attributed to contamination of the fragment preparation by actin or proteolytic enzymes. ATP-independent shape transformation was not inhibited. The band 3 fragment may compete with endogenous, intact band 3 for an association with the spectrin-actin network required for ATP-dependent smoothing of crenated membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.