Abstract

Several clinical trials revealed that estrogen receptor (ER) status had relevance to the response of mammary malignancy to chemotherapy. Autophagy has emerged as an important cellular mechanism of tumor cells in response to anticancer therapy. The aim of this study is to investigate whether gemcitabine induces autophagy, and more importantly, whether such autophagy is functional relevant to the therapeutic effects of gemcitabine in breast cancer cells in relation to the ER status. In our study, autophagy was induced both in ER+ MCF-7 and ER− MDA-MB-231 cells by gemcitabine markedly, while the autophagy plays distinct roles – cytoprotective in ER− MDA-MB-231 and cytotoxic in ER+ MCF-7 cells. Gemcitabine treatment leads to the activation of ERα-ERK-P62 signal pathway in MCF-7 cells which may augment the autophagic degradation, thus results in the excessive activation of autophagy and irreversible autophagic cell death eventually. Inhibition of ERα-ERK-P62 cascades in MCF-7 cells by small interfering RNA or PD98059 impairs the autophagic degradation, and leads to “autophagic switch” – from cytotoxic autophagy to cytoprotection. Moreover, stable overexpression of ERα in the ER− BCap37 breast cancer cell line enhances the gemcitabine-induced autophagy flux and switches the autophagic cytoprotection in ER− BCap37 to cytotoxicity effect in ER+ BCap37 cells. Our study firstly demonstrated that ER status influences gemcitabine efficacy via modulating the autophagy in breast cancer cells.

Highlights

  • Breast cancer is the most prevalent type of malignancy among American women, which is expected to account for 29% of all new diagnosed cancer cases and the second leading cause of cancer-related death in 2014 [1]

  • Our study aims to clarify whether estrogen receptor (ER) status is functional relevant to the autophagy induced in breast cancer cells that may be related to the therapeutic efficacy of gemcitabine, and the potential mechanisms involved

  • When MCF-7 and MDA-MB-231 cells were exposed to gemcitabine, the ratio of LC3-II/LC3-I was increased in a time dependent manner (Figure 1A, 1E)

Read more

Summary

Introduction

Breast cancer is the most prevalent type of malignancy among American women, which is expected to account for 29% of all new diagnosed cancer cases and the second leading cause of cancer-related death in 2014 [1]. As adeoxycytidine analogue [2], gemcitabine has been first recommended in the therapeutic regimens for those breast cancer patients who have failed with the treatment of anthracyclines and taxanes [3]. Many clinical trials have tested the feasibility of gemcitabine in combination with taxanes and/or anthracyclines as a first-line therapy for advanced and/or metastatic breast cancer [4,5,6,7,8]. A large proportion of breast cancer patients are unresponsive or acquire resistance to gemcitabine, but the mechanisms underlying the chemoresistance are complex and still not entirely clear. It has important clinical significance to shed new light into the cellular response after gemcitabine treatment and potential mechanisms of drug resistance, and to promote the optimal use of gemcitabine in breast cancer patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call