Abstract
Patients with chronic kidney disease have elevated circulating asymmetric dimethylarginine (ADMA). Recent studies have suggested that ADMA impairs endothelial nitric oxide synthase (eNOS) by effects other than competition with the substrate L-arginine. Here, we sought to identify the molecular mechanism by which increased ADMA causes endothelial dysfunction in a chronic kidney disease model. In wild-type mice with remnant kidney disease, blood urea nitrogen, serum creatinine, and ADMA were increased by 2.5-, 2-, and 1.2-fold, respectively, without any change in blood pressure. Nephrectomy reduced endothelium-dependent relaxation and eNOS phosphorylation at Ser1177 in isolated aortic rings. In transgenic mice overexpressing dimethylarginine dimethylaminohydrolase-1, the enzyme that metabolizes ADMA, circulating ADMA was not increased by nephrectomy and was decreased to half that of wild-type mice. These mice did not exhibit the nephrectomy-induced inhibition of both endothelium-dependent relaxation and eNOS phosphorylation. In cultured human endothelial cells, agonist-induced eNOS phosphorylation and nitric oxide production were decreased by ADMA at concentrations less than that of L-arginine in the media. Thus, elevated circulating ADMA may be a cause, not an epiphenomenon, of endothelial dysfunction in chronic kidney disease. This effect may be attributable to inhibition of eNOS phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.