Abstract

3-Nitropropionic acid (1 mM), which inhibits succinate dehydrogenase activity and reduces cellular energy, produces in the pyramidal cell layer of the hippocampal region CAl a hyperpolarization for variable lengths of time before evoking an irreversible depolarization. Hyperpolarization is caused by an increased potassium conductance that is attenuated by glibenclamide (1–10 μM), a selective antagonist of ATP-sensitive potassium channels: in contrast,diazoxide (0.5 mM), an agonist at this channel, induces a hyperpolarization in CA1 neurons of rat hippocampal slices. The transient hyperpolarization after prolonged (ca. 1 h) application of 3 NPA is followed by a depolarization that incompletely reversed by brief application of the glutamate antagonists ( d-2-amino-5-phosphonopentanoic acid (APV), 6,7-dichloroquinoxaline-2,3-dione (CNQX), 3-(±)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), 7-chloro-kynurenic acid (7Cl-KYN)). Early application of glibenclamide (within the initial 5 min) blocked or reduced hyperpolarization and accelerated the depolarization. These data suggest that metabolic inhibition by 3-NPA initially activates ATP-sensitive potassium channels. Events other than activation of glutamate receptors participate in the final depolarization resulting from uncoupling of oxidative phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call