Abstract

Homocysteine (HC) is a highly reactive thiol intermediate in amino acid metabolism, which can modify the function of endothelial cells in a myriad of ways. In vitro, homocysteine can inhibit the thromboresistance properties of the endothelial cell by induction of procoagulant factors, inactivation of natural anticoagulant systems, and suppression of vasodilatory and platelet-modulating factors. HC also inhibits the fibrinolytic system by impairing the ability of the endothelial cell to bind tissue plasminogen activator (t-PA), by interacting directly with the t-PA binding "tail" domain of its endothelial cell receptor, annexin II. Moreover, HC influences endothelial cell gene expression as exemplified by induction of the elongation factor-1 family of polypeptides, which promote polypeptide chain elongation during mRNA translation. Induction of EF-1 subunits alpha, beta, gamma and delta by homocysteine is associated with increased turnover of at least one free thiol-containing protein, suggesting that up-regulation of these subunits may represent a mechanism for replacement of damaged or modified proteins. A more complete understanding of the diverse effects of homocysteine on endothelial cell function may provide important clues to the precise role homocysteine may play in the initiation and progression of vascular disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.