Abstract
Carbon monoxide (CO) has been found to be produced in every living cell in a biochemical reaction catalyzed by heme-oxygenase (HO) enzyme which degrades heme into biliverdin, CO, and iron. Endogenous CO is not a waste product, but acts as a chemical messenger mediating and modulating many intracellular biochemical reactions that regulate physiological functions. This study was designed to investigate the effect of inhibition of endogenous CO production by zinc protoporphyrin (ZnPP), an HO inhibitor, on the gastric secretion and ulceration induced by cold-restraint stress (CRS) in adult male albino rats. Rats were pylorically ligated and divided randomly into the following groups (six rats each): control, ZnPP treated (50 μmol/kg/day, s.c. for 10 days), CRS, and stressed ZnPP treated groups. Blood samples were collected from the retro-orbital sinus of anesthetized rats for determination of CO concentration. We found that ZnPP pretreatment significantly decreased HO-1 level, CO level, and volume of gastric juice as compared to the control non-stressed rats. In the present study, ZnPP pretreatment proved to be protective against development of ulcerative lesions in CRS model as evidenced by reduction of the ulcer index, and this could be mediated through reduction of free and total acidity of gastric secretion and decreased lipid peroxidation but with significantly decreased gastric protective nitric oxide and prostaglandin E(2) levels. In conclusion and according to our results, the protective effect of ZnPP on CRS-induced gastric ulcers despite of inhibition of endogenous CO could be attributed to the presence of zinc which is known to have a protective anti-ulcer effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.