Abstract
Changes in leukocyte-endothelial and microvascular perfusion are hallmark events in inflammation. Thus, protection of the intestinal microcirculation represents a pivotal therapeutic target in systemic inflammation and sepsis. The endocannabinoid system (ECS) modulates a number of critical homeostatic functions and has been associated with anti-inflammatory responses. Our study aimed to examine intestinal leukocyte adhesion and capillary perfusion following selective inhibition of the endocannabinoid degradation enzyme, fatty acid amide hydrolase (FAAH), in experimental sepsis (endotoxemia). Five groups of rats were used: controls, endotoxemia [lipopolysaccharide (LPS)], FAAH inhibitor URB597 (0.3 mg/kg)+LPS, URB597 (0.6 mg/kg)+LPS, and URB597 (0.6 mg/kg)+cannabinoid 2 receptor (CB2R) antagonist (AM630)+LPS. After 2 h, intravital microscopy was performed to quantify intestinal leukocyte recruitment and functional capillary density (FCD), as well as macrohemodynamic monitoring and histological examinations. LPS induced a significant increase in leukocyte adhesion in collecting and postcapillary submucosal venules and a decrease in intestinal FCD. URB597 pretreatment prevented the LPS-induced increase in leukocyte adhesion in intestinal venules and a decrease in intestinal FCD. The administration of the CB2R inhibitor, AM630, with URB597 reversed the protective effects of URB597 on the LPS-induced increase in leukocyte adhesion in intestinal venules, but not URB597's effect on the intestinal FCD. FAAH inhibition prevents the LPS-induced increase in leukocyte adhesion and improves the capillary perfusion of the gut. This might be mediated in part by CB2R activation. Our study encourages further investigation into the therapeutic potential of drugs targeting the ECS in sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: jbcpp
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.