Abstract

Heterotopic ossification (HO) consists of formation of ectopic cartilage followed by endochondral bone and is triggered by major surgeries, large wounds, and other conditions. Current therapies, including low-dose irradiation, are not always effective and do not target the skeletogenic process directly. Because chondrogenesis requires a decrease of nuclear retinoic acid receptor alpha (RARalpha) action, we reasoned that pharmacologic activation of this receptor pathway should inhibit HO. Thus, we selected the synthetic retinoid NRX195183, a potent and highly selective RARalpha-agonist, and found that it did inhibit chondrogenesis in mouse limb micromass cultures. We established a mouse HO model consisting of subcutaneous implantation of Matrigel mixed with rhBMP-2. Control mice receiving daily oral doses of vehicle (peanut oil) or retinol (a natural nonactive retinoid precursor) developed large HO-like masses by days 9-12 that displayed abundant cartilage, endochondral bone, vessels, and marrow. In contrast, formation of HO-like masses was markedly reduced in companion mice receiving daily oral doses of alpha-agonist. These ectopic masses contained sharply reduced amounts of cartilage and bone, blood vessels, and TRAP-positive osteoclasts, and expressed markedly lower levels of master chondrogenic genes including Sox9, cartilage genes such as collagen XI and X, and osteogenic genes including Runx2. The data provide proof-of-principle evidence that a pharmacological strategy involving a selective RARalpha-agonist can indeed counteract an ectopic skeletal-formation process effectively and efficiently, and could thus represent a novel preventive treatment for HO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call