Abstract

Simple DNA repeats (trinucleotide repeats, micro- and minisatellites) are prone to expansion/contraction via formation of secondary structures during DNA synthesis. Such structures both inhibit replication forks and create opportunities for template-primer slippage, making these repeats unstable. Certain aspects of simple repeat instability, however, suggest additional mechanisms of replication inhibition dependent on the primary DNA sequence, rather than on secondary structure formation. I argue that expanded simple repeats, due to their lower DNA complexity, should transiently inhibit DNA synthesis by locally depleting specific DNA precursors. Such transient inhibition would promote formation of secondary structures and would stabilize these structures, facilitating strand slippage. Thus, replication problems at simple repeats could be explained by potentiated toxicity, where the secondary structure-driven repeat instability is enhanced by DNA polymerase stalling at the low complexity template DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.