Abstract

Human estrogen-related receptor 2 (hERR2, ESRRB, ERRbeta, NR3B2) belongs to a class of nuclear receptors that bind DNA through sequence-specific interactions with a 5'-AGGTCA-3' estrogen response element (ERE) half-site in the major groove and an upstream 5'-TNA-3' site in the minor groove. This minor groove interaction is mediated by a C-terminal extension (CTE) of the DNA binding domain and is unique to the estrogen-related receptors. We have used synthetic pyrrole-imidazole polyamides, which bind specific sequences in the minor groove, to demonstrate that DNA binding by hERR2 is sensitive to the presence of polyamides in both the upstream minor groove CTE site and the minor groove of the ERE half-site. Thus, polyamides can inhibit hERR2 by two mechanisms, by direct steric blockage of minor groove DNA contacts mediated by the CTE and by changing the helical geometry of DNA such that major groove interactions are weakened. To confirm the generality of the latter approach, we show that the dimeric human estrogen receptor alpha (hERalpha, ESR1, NR3A1), which binds in the major groove of the ERE, can be inhibited by a polyamide bound in the opposing minor groove of the ERE. These results highlight two mechanisms for inhibition of protein-DNA interactions and extend the repertoire of DNA recognition motifs that can be inhibited by polyamides. These molecules may thus be useful for controlling expression of hERR2- or hERalpha-responsive genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.