Abstract

Xanthine oxidase (XO) and dipeptidyl peptidase IV (DPP-IV) inhibition by amino acids and dipeptides was studied. Trp and Trp-containing dipeptides (Arg-Trp, Trp-Val, Val-Trp, Lys-Trp and Ile-Trp) inhibited XO. Three amino acids (Met, Leu and Trp) and eight dipeptides (Phe-Leu, Trp-Val, His-Leu, Glu-Lys, Ala-Leu, Val-Ala, Ser-Leu and Gly-Leu) inhibited DPP-IV. Trp and Trp-Val were multifunctional inhibitors of XO and DPP-IV. Lineweaver and Burk analysis showed that Trp was a non-competitive inhibitor of XO and a competitive inhibitor of DPP-IV. Molecular docking with Autodock Vina was used to better understand the interaction of the peptides with the active site of the enzyme. Because of the non-competitive inhibition observed, docking of Trp-Val to the secondary binding sites of XO and DPP-IV is required. Trp-Val was predicted to be intestinally neutral (between 25% and 75% peptide remaining after 60min simulated intestinal digestion). These results are of significance for the reduction of reactive oxygen species (ROS) and the increase of the half-life of incretins by food-derived peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.