Abstract

Resveratrol (RSV) and resveratrol analogs have a potential use in prostate cancer chemoprevention due to effects on for example, cell growth, apoptosis, angiogenesis, and metastasis. However, inhibition of CYP17A1, a key enzyme in the androgen biosynthesis and a target for prostate cancer therapy, has not been explored as a possible mechanism behind the effects on prostate cancer. Human adrenocortical carcinoma cells, H295R, were treated with RSV, piceatannol (PIC), 3,5,4'-triacetylresveratrol (RSVTA), 3,5-diacetylresveratrol (RSVDA), and 3,5,4'-trimethylresveratrol (RSVTM) for 24 hr at concentrations of 1, 5, 10, 25, and 50 µM. Steroid secretion, enzyme activities, and gene expression of key steps in steroidogenesis were investigated. Secretion of dihydroepiandrosterone (DHEA), testosterone, and cortisol were drastically decreased by all test compounds at concentrations that did not affect cell viability. Progesterone and aldosterone secretion were increased. This steroid secretion pattern can be explained by the demonstrated inhibition of CYP17A1 enzyme activity. The most efficient CYP17A1 inhibitors were the synthetic analogs RSVTA, RSVDA, and RSVTM. Inhibition by RSVTM was more selective on the 17,20-lyase activity than hydroxylase activity of CYP17A1. Treatment of cells with all compounds, except RSVTM, caused increased estradiol levels, which could be explained by the demonstrated inhibition of estrogen sulfate conjugation, catalyzed by SULT1E1. Our results on CYP17A1 inhibition of RSV and RSV analogs suggest a novel mechanism for chemoprevention of prostate cancer by resveratrol and the analogs. Especially RSVTM, which has a preferential inhibition on the 17,20-lyase activity of CYP17A1, may be a promising candidate for prostate cancer chemoprevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.