Abstract

Previously, the antioxidant activity of Se-enriched green tea extracts has been studied in vitro. In the present study, an in vivo micronuclei test was employed to assess the antimutagenic effect of microsized Se-enriched green tea powder (MSTP) in mice bone marrow. Pretreatments of MSTP, micrometer-sized regular tea powder (MRTP), selenite, and MRTP + selenite were given by gavage for 29 consecutive days prior to cyclophoshamide (CP) treatment. Certain key antioxidant enzymes were also investigated to elucidate the mechanism of antimutagenic effect. Results indicated that MSTP and MRTP or selenite alone did not significantly induce micronuclei at either concentration, confirming its nonmutagenicity. In the CP-treated groups, significant suppressions in the micronuclei were recorded following pretreatment with MSTP, MRTP, and selenite administration. The antimutagenic effect of MSTP was evidently observed by significant reduction in the frequencies of micronuclei in bone marrow cells when compared to a positive control group. The administration of MSTP, selenite, and MRTP + selenite also increased the levels of selenium concentration, glutathione peroxidase (GPx), and superoxide dismutase (SOD) enzymes in both blood and liver. However, no pronounced differences in activities of GPx and SOD were found among MSTP, selenite, and MRTP + selenite. The present findings demonstrate that the antimutagenic potential of MSTP could not be solely related to the enhancment of antioxidant enzymes of GPx and SOD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call