Abstract

Dysfunction of the blood-spinal cord barrier (BSCB) contributes to the occurrence and development of neuropathic pain (NP). Previous studies revealed that the activation of cyclophilin A (CypA)-metalloproteinase-9 (MMP9) signaling pathway can disrupt the integrity of the blood-brain barrier (BBB) and aggravate neuroinflammatory responses. However, the roles of CypA-MMP9 signaling pathway on BSCB in NP have not been studied. This study aimed to investigate the effect of CypA on the structure and function of the BSCB and pain behaviors in mice with NP. We first created the mouse chronic constriction injury (CCI) model, and they were then intraperitoneally injected with the CypA inhibitor cyclosporine A (CsA) or vehicle. Pain behaviors, the structure and function of the BSCB, the involvement of the CypA-MMP9 signaling pathway, microglia activation, and expression levels of proinflammatory factors in mice were examined. CCI mice presented mechanical allodynia and thermal hyperalgesia, impaired permeability of the BSCB, downregulated tight junction proteins, activated CypA-MMP9 signaling pathway, microglia activation, and upregulated proinflammatory factors, which were significantly alleviated by inhibition of CypA. Collectively, the CypA-MMP9 signaling pathway is responsible for CCI-induced NP in mice by impairing the structure and function of the BSCB, and activating microglia and inflammatory responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.