Abstract

Earlier we have shown that certain flavonoids (e.g., quercetin) are high-affinity reducing cosubstrates for cyclooxygenase (COX) 1 and 2. These compounds can bind inside the peroxidase active sites of COXs and donate an electron from one of their B-ring hydroxyl groups to hematin. Based on these earlier findings, it is postulated that some of the natural flavonoids such as galangin that are structural analogs of quercetin but lack the proper B-ring hydroxyl groups might function as novel inhibitors of COXs by blocking the effect of the reducing cosubstrates. This idea is tested in the present study. Computational docking analysis together with quantum chemistry calculation shows that galangin can bind inside the peroxidase active sites of COX-1 and COX-2 in a similar manner as quercetin, but it has little ability to effectively donate its electrons, thereby blocking the effect of the reducing cosubstrates like quercetin. Further experimental studies confirm that galangin can inhibit, both in vitro and in vivo, quercetin-mediated activation of the peroxidase activity of the COX-1/2 enzymes. The results of the present study demonstrate that galangin is a novel naturally-occurring inhibitor of COX-1 and COX-2, acting by blocking the function of the reducing cosubstrates at the peroxidase sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.