Abstract
Many processes take place during embryogenesis, and the development of the palate mainly involves proliferation, migration, osteogenesis, and epithelial-mesenchymal transition. Abnormalities in any of these processes can be the cause of cleft palate (CP). There have been few reports on whether C-X-C motif chemokine receptor 4 (CXCR4), which is involved in embryonic development, participates in these processes. In our study, the knockdown of Cxcr4 inhibited the migration of mouse embryonic palatal mesenchymal (MEPM) cells similarly to the use of its inhibitor plerixafor, and the inhibition of cell migration in the Cxcr4 knockdown group was partially reversed by supplementation with C-X-C motif chemokine ligand 12 (CXCL12). In combination with low-dose retinoic acid (RA), plerixafor increased the incidence of cleft palates in mice by decreasing the expression of Cxcr4 and its downstream migration-regulating gene Rac family small GTPase 1 (RAC1) mediating actin cytoskeleton to affect lamellipodia formation and focal complex assembly and ras homolog family member A (RHOA) regulating the actin cytoskeleton to affect stress fiber formation and focal complex maturation into focal adhesions. Our results indicate that the disruption of cell migration and impaired normal palatal development by inhibition of Cxcr4 expression might be mediated through Rac1 with RhoA. The combination of retinoic acid and plerixafor might increase the incidence of cleft palate, which also provided a rationale to guide the use of the drug during conception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.