Abstract
Vulvovaginal candidiasis (VVC) is a disease commonly occurring in sexually active women. The involvement of microRNAs in several kinds of infectious diseases has been highlighted in a number of researches. Therefore, we conducted the present study in order to investigate whether microRNA-1192 (miR-1192) would significantly target CXCR4 in Th17 cells as well as inflammatory factors in mouse models suffering from VVC. Seventy-five mice were selected as test subjects for this study, of which twenty-five were used as the normal control, while the rest were treated with estradiol or oil-treated in order to establish VVC mouse models (each n = 25). Protein expressions of CXCR4, IL-6, IL-17, and IL-23 were all measured using both an immunohistochemistry and ELISA. The Th17 cell percentage in peripheral blood and the expression of RORγt in Th17 cells were detected using a flow cytometry. Mouse vaginal epithelial cells were isolated from normal mice, after which the mice were treated with estradiol to regulate their estrogen, followed by treatments involving the miR-1192 mimic, miR-1192 inhibitor, siRNA-CXCR4, and miR-1192 inhibitor + si-CXCR4. The cell cycle, apoptosis, and proliferation were all examined by using an additional flow cytometry as well as the employment of the MTT assay. The miR-1192, CXCR4, IL-6, IL-17, and IL-23 expressions in tissues and cells were both measured using both RT-qPCR and western blot assay techniques. The mice treated with either estradiol or oil had presented to us lowered levels in miR-1192 expression as well as higher levels in both Th17 cell percentage and expression of RORγt in Th17 cells, along with mRNA and protein expressions of CXCR4, IL-6, IL-17, and IL-23. In cell experiments, the mouse vaginal epithelial cells that had been treated with miR-1192 inhibitor had shown us a decreased cell proliferation rate and contrarily increased expressions of CXCR4, IL-6, IL-17, and IL-23 mRNA, protein, and cell apoptosis rate; these results were opposite to the ones found in the mice treated with miR-1192 mimic. Our results provided significant evidence that miR-1192 could directly development and progression of VVC by restraining the CXCR4 gene in the VVC mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.