Abstract
Collagen and elastin fibres are of major importance in providing the aorta with tensile strength and elasticity. The presence of cross-links in collagen and elastin is essential for the mechanical stability of collagen and elastin fibres. β-aminopropionitrile (BAPN) reduces the formation of cross-links by inhibiting the enzyme lysyloxidase. Young rats were injected with BAPN to inhibit the formation of cross-links, and the changes in the biomechanical and biochemical properties of the thoracic aorta were studied. The biomechanical analyses of aortic samples from BAPN-treated rats showed a significantly increased diameter (1.64±0.02 mm), a significantly reduced maximum load (1.08±0.08 N), and a significantly reduced maximum stiffness (3.34±0.10 N) compared with controls (1.57±0.02 mm, 1.55±0.04 N and 4.49±0.14 N, respectively). No changes in the concentrations of collagen and elastin were found. The content of pyridinoline, a mature collagen cross-link, was significantly decreased by 49% in the BAPN-treated group compared with controls. No changes in the concentration of desmosine+isodesmosine, the major cross-links of elastin, were found. The present study shows that cross-links are essential in providing mechanical stability of the aorta. Even a partial inhibition of the cross-linking processes results in a destabilisation of the aortic wall with increased diameter and reduced strength and stiffness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.