Abstract

We added three different carbohydrates (Xylose/Xyl, Maltose/Mal, and Sodium alginate/Sal) to pH12.5-shifted silkworm pupa protein isolates (SPPI), and examined the influence of multi-frequency ultrasound (US) on them, with reference to lysinoalanine (LAL) formation, changes in conformational characteristics and functionality. Results showed that, the LAL content of the glycoconjugates - SPPI-Xyl, SPPI-Mal, and SPPI-Sal decreased by 1.47, 1.39, and 1.54 times, respectively, compared with the control. Notably, ultrasonication further reduced the LAL content by 45.85 % and brought SPPI-Xyl highest graft degree (57.14 %). SPPI-Xyl and SPPI-Mal were polymerized by different non-covalent bonds, and SPPI-Sal were polymerized through ionic, hydrogen, and disulfide (covalent/non-covalent) bonds. Significant increase in turbidity, Maillard reaction products and the formation of new hydroxyl groups was detected in grafted SPPI (p < 0.05). US and glycation altered the structure and surface topography of SPPI, in which sugars with high molecular weight were more likely to aggregate with SPPI into enormous nanoparticles with high steric hindrance. Compared to control, the solubility at pH 7.0, emulsifying capacity and stability, and foaming capacity of SPPI-US-Xyl were respectively increased by 244.33 %, 86.5 %, 414.67 %, and 31.58 %. Thus, combined US and xylose-glycation could be an effective approach for minimizing LAL content and optimizing functionality of SPPI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call