Abstract
Mitogen-activated protein kinases (MAPKs), in particular p38 MAPK, are phosphorylated in response to contractile activity, yet the mechanism for this is not understood. We tested the hypothesis that the force of contraction is responsible for p38 MAPK phosphorylation in skeletal muscle. Extensor digitorum longus (EDL) muscles isolated from adult male Swiss Webster mice were stimulated at fixed length at 10 Hz for 15 min and then subjected to Western blot analysis for the phosphorylation of p38 MAPK and ERK1/2. Contralateral muscles were fixed at resting length and were not stimulated. Stimulated muscles showed a 2.5-fold increase in phosphorylated p38 MAPK relative to nonstimulated contralateral controls, and there was no change in the phosphorylation of ERK1/2. When contractile activity was inhibited with N-benzyl-p-toluene sulfonamide (BTS), a specific inhibitor of actomyosin ATPase, force production decreased in both a time- and concentration-dependent manner. Preincubation with 25, 75, and 150 microM BTS caused 78+/-4%, 97+/-0.2%, and 99+/-0.2% inhibition in contractile force, respectively, and was stable after 30 min of treatment. Fluorescence measurements demonstrated that Ca2+ cycling was minimally affected by BTS treatment. Surprisingly, BTS did not suppress the level of p38 MAPK phosphorylation in stimulated muscles. These data do not support the view that force generation per se activates p38 MAPK and suggest that other events associated with contraction must be responsible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.