Abstract

Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) and microsomal prostaglandin E synthase-1 (mPGES-1)-derived eicosanoids play an essential role in human inflammatory disorders. Here, we investigated whether inhibition of COX-2/mPGES-1 and 5-LOX in macrophages by leonurine ameliorates monosodium urate (MSU) crystal-induced inflammation. Virtual screening assay and in vitro enzyme inhibition assay showed that leonurine was a potential inhibitor of COX-2, mPGES-1 and 5-LOX. Compared with COX-2 inhibitor celecoxib, leonurine (30 mg/kg) significantly decreased ankle perimeter, gait score and neutrophil number in synovial fluid in MSU crystal-treated rats, accompanied with the decreased expression of COX-2, mPGES-1 and 5-LOX and production of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the synovial fluid macrophages. In addition, leonurine decreased representative M1 marker (iNOS and CD86) expression, NLRP3 inflammasome activation and M1 cytokine (TNF-α and IL-1β) production. In the in vitro cultured RAW264.7 and human monocyte-derived macrophages (MDMs), blockade of COX-2/mPGES-1 and 5-LOX by leonurine inhibited macrophage M1 polarization and NLRP3 inflammasome activation in response to MSU crystals, and thus down-regulated IL-1β and TNF-α with STAT1 and NF-κB inactivation. Conversely, these effects were partially abolished by overexpression of COX-2, mPGES-1, 5-LOX or STAT1. Furthermore, leonurine prevented a positive feedback loop between COX-2/mPGES-1/5-LOX and IL-1β/TNF-α in MSU crystal-induced inflammation. Together, simultaneous down-regulation of COX-2/mPGES-1 and 5-LOX by leonurine ameliorates MSU crystal-induced inflammation through decreasing IL-1β and TNF-α production. Our study may provide novel multi-target agents toward the arachidonic acid (AA) network for gouty arthritis therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.