Abstract

The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I (apoA-I) have different structural features and biological activities in vitro and in vivo. To investigate the potential cardioprotective effects of apolipoprotein A-I(N74C) [apoA-I(N74C)], we examined the anti-inflammatory, antioxidant, and antiatherosclerotic effects of this cysteine mutant in a rapid atherosclerosis model induced by perivascular carotid collar placement in apoE⁻/⁻ mice. Lipid-free apoA-I(N74C) showed a significant increased antioxidant potency in low density lipoprotein (LDL) oxidation in vitro and reduced intracellular lipid accumulation in THP-1-derived macrophages, relative to wild-type apoA-I (apoA-Iwt). Mice injected with recombinant HDL (rHDL) reconstituted with apoA-I(N74C) (named rHDL74) through tail veins (40 mg/kg of body weight, three injections) had a significant lower level of serum interleukin-6 (IL-6) and enhanced serum antioxidation compared with mice receiving rHDL reconstituted with apoA-Iwt (named rHDLwt). Moreover, compared with rHDLwt, the rHDL74 in vivo injection resulted in a significant decrease in plaque size, ratio of aorta intima to media, arterial remodeling, and macrophage content in lesions. In summary, intravenous injection with rHDL74 reconstituted with apoA-I cysteine mutant apoA-I (N74C) dramatically delays the development of atherosclerosis induced by perivascular carotid collar placement and reduces vascular remodeling in the carotid artery in apoE⁻/⁻ mice.

Highlights

  • The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I have different structural features and biological activities in vitro and in vivo

  • The cardioprotective effects of high density lipoprotein (HDL) and apolipoprotein A-I (apoA-I) have been attributed to their functions on reverse cholesterol transport (RCT), inhibition of inflammation and low density lipoprotein (LDL) oxidation, reduction of thrombus formation, etc. [4,5,6,7,8]

  • Our results showed that apoA-I(N74C) dramatically inhibited the formation of MDA in LDL and decreased the intracellular lipid accumulation in vitro compared with apoA-Iwt

Read more

Summary

Introduction

The previous studies in our laboratory revealed that seven cysteine mutants of apolipoprotein A-I (apoA-I) have different structural features and biological activities in vitro and in vivo. To investigate the potential cardioprotective effects of apolipoprotein A-I(N74C) [apoA-I(N74C)], we examined the anti-inflammatory, antioxidant, and antiatherosclerotic effects of this cysteine mutant in a rapid atherosclerosis model induced by perivascular carotid collar placement in apoE؊/؊ mice. Intravenous injection with rHDL74 reconstituted with apoA-I cysteine mutant apoA-I (N74C) dramatically delays the development of atherosclerosis induced by perivascular carotid collar placement and reduces vascular remodeling in the carotid artery in apoE؊/؊ mice.— Zhang, X., X. Repeated doses (40 mg/kg) and a single high dose of recombinant apoA-IMilano/PC (400 mg/kg) prevented the progression of aortic atherosclerosis and reduced the lipid and macrophage content in plaques of apoE-deficient (apoEϪ/Ϫ) mice compared with the control group [12, 17].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call