Abstract

The synthesis of collagen under conditions in which polypeptide chain initiation is selectively inhibited by medium hypertonicity was compared to the synthesis of other proteins in chick embryo leg bone cells in monolayer cultures. Three different approaches showed that collagen synthesis is far more sensitive than the majority of other cellular proteins to the hypertonic initiation block. In marked contrast, the synthesis of an unidentified protein, migrating with an apparent molecular of 45,000 to 50,000 is particularly resistant to hypertonicity. The effects of hypertonic conditions were found to be readily reversible upon restoration of isotonicity. Since these suboptimal growth conditions can decrease the amount of collagen synthesized relative to total protein synthesis, they provide an experimental model for the study of the translational control of the synthesis of collagen and other proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.