Abstract

In the present study we evaluated the in vivo effect of arginine on CO(2) production from glucose in a medium with physiological and high extracellular K(+) concentrations. We also tested the influence of the nitric oxide synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the effects elicited by arginine in order to investigate the possible participation of NO and/or its derivatives on the effects of arginine on CO(2) production from glucose. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (control; group I), arginine (0.8 g/kg; group II), L-NAME (2.0 mg/kg; group III) or arginine (0.8 g/kg) plus L-NAME (2.0 mg/kg; group IV) and were killed 1 h later. Results showed that arginine administration inhibited CO(2) production from glucose at physiological extracellular K(+) concentration and L-NAME prevented such effect. In contrast, arginine administration had no effect on CO(2) production from glucose at high extracellular K(+) concentration. Based on these data, we also investigated the in vitro effect of arginine on CO(2) production from glucose in a medium with physiological extracellular K(+) concentration in hippocampus slices. Results showed that arginine (0.1-1.5 mM) when added to the incubation medium did not alter CO(2) production from glucose in hippocampus slices of untreated rats. In addition, we also demonstrated that arginine inhibits Na(+), K(+)-ATPase activity. The data indicate that the reduction of CO(2) production by arginine was probably mediated by NO and/or its derivatives, which could act inhibiting the activity of Na(+), K(+)-ATPase. The results suggest that arginine impairs energy metabolism in hippocampus slices of rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call