Abstract

Possible structural and functional similarities between the channel part, CF0, of chloroplast ATPase (CF0CF1) and ion channels permeable to monovalent cations were investigated using high-affinity toxins mainly targeted against voltage-sensitive K+ channels. In particular, the effect of the K(+)-channel blocker alpha-dendrotoxin and the crude scorpion venom of Leiurus quinquestriatus hebraeus (LQ venom) on ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes was characterised. Alpha-dendrotoxin (K(i) approximately 5.05 microM) and the LQ venom (K(i) approximately 1.55 micrograms/ml) specifically inhibited ATP synthesis in thylakoid membranes and in CF0CF1-containing liposomes. Our results show that alpha-dendrotoxin and peptides of the LQ venom with an apparent molecular mass of about 4.0 kDa, probably isoforms of charybdotoxin, specifically bind to CF0CF1. This binding was reversible and induced a high leak conductance for H+ through CF0. The Ca(2+)-dependent ATPase activity of the isolated soluble part of CF0CF1 (CF1) was completely inhibited by 1 microM alpha-dendrotoxin, while the crude LQ venom, at concentrations up to 10 micrograms/ml, had no affect on ATPase activity. The concentration dependence of the inhibition by alpha-dendrotoxin indicates that approximately 2 mol alpha-dendrotoxin bind/mol CF0CF1 and 1 mol alpha-dendrotoxin/mol CF1. Known inhibitors of H(+)-flow-through CF0 acted in the presence of alpha-dendrotoxin synergistically. Dicyclohexylcarbodiimide and venturicidin, in contrast to their known effect of blocking H(+)-flow-through CF0, increased the leak conductance through CF0 in the presence of alpha-dendrotoxin drastically. This uncoupling effect indicates that their normal mode of blocking is a secondary effect. Binding of the inhibitors to their respective sites apparently does not affect the proton pathway in CF0, but induces a conformation which closes the channel part for H+. Protein sequence comparison between the known binding site of charybdotoxin in the shaker K+ channel from Drosophila [MacKinnon, R. & Heginbotham, L. (1990) Neuron 5, 767-771] and the choroplast ATPase showed that subunit III reveals a significant similarity (64%) in parts of its sequence (Gln28-Leu53) to the helix 5 and helix 6 (S5-S6) linker region (Ala413-Cys462; the charybdotoxin-binding site) of the shaker K+ channel. According to secondary-structure predictions, the homologous sequences in subunit III and the shaker K+ channel represent putative hydrophilic loops connecting two transmembrane alpha-helices. Apparently the shaker K+ channel and subunit III share significant topological features in these hydrophilic loops which may be part of the respective channel entrance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call