Abstract
The effects of the nonspecific cyclic nucleotide inhibitors 1-methyl-3-isobutylxanthine (IBMX) and dipyridamole, and the cGMP-specific phosphodiesterase inhibitor Zaprinast were studied on parallel fiber-Purkinje cell synaptic responses in rat cerebellar slices. Bath application of all three compounds, at concentrations shown to inhibit cGMP breakdown, led to stable and robust long-term depression of PF responses. Injections of dipyridamole directly into the Purkinje cell dendrites were similarly effective as bath applications, confirming a postsynaptic site of action. Inhibitors of both protein kinase G and C and also the metabotropic glutamate receptor antagonist MCPG completely prevented the induction of LTD by dipyridamole and Zaprinast. The extent of phosphodiesterase-induced synaptic depression was dependent on the frequency of parallel fiber stimulation, and this form of LTD both occluded and was occluded by LTD induced by pairing parallel and climbing fiber inputs. The degree of LTD induced by IBMX was dose-dependent, and also required PKC and PKG activity, but was preceded by a large, transient potentiation of parallel fiber responses occurring by a postsynaptic mechanism independent of cGMP. These data not only confirm that cGMP is capable of inducing cerebellar LTD when paired with parallel fiber stimulation but indicate that cGMP is an endogenous intermediate in this form of synaptic plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.