Abstract

Background. Mobilization of bone marrow-origin CD34+ cells was investigated 3 days (3d) after acute myocardial infarction (AMI) with/without ischemic preconditioning (IP) in relation to stromal-derived factor-1 (SDF-1α)/ chemokine receptor type 4 (CXCR4) axis, to search for possible mechanisms behind insufficient cardiac repair in the first days post-AMI. Methods. Closed-chest reperfused AMI was performed by percutaneous balloon occlusion of the mid-left anterior descending (LAD) coronary artery for 90min, followed by reperfusion in pigs. Animals were randomized to receive either IP initiated by 3x5min cycles of re-occlusion/re-flow prior to AMI (n=6) or control AMI (n=12). Blood samples were collected at baseline, 3d post-AMI, and at 1-month follow-up to analyse chemokines and mobilized CD34+ cells. To investigate the effect of acute hypoxia, SDF-1α and matrix metalloproteinase (MMP)-2 in vitro were assessed, and a migration assay of CD34+ cells toward cardiomyocytes was performed. Results. Reperfused AMI induced significant mobilisation of CD34+ cells (baseline: 260±75 vs. 3d: 668±180; P<0.001) and secretion of MMP-2 (baseline: 291.83±53.40 vs. 3d: 369.64±72.89; P=0.011) into plasma, without affecting the SDF-1α concentration. IP led to the inhibition of MMP-2 (IP: 165.67±47.99 vs. AMI: 369.64±72.89; P=0.004) 3d post-AMI, accompanied by increased release of SDF-1α (baseline: 23.80±12.36 vs. 3d: 45.29±11.31; P=0.05) and CXCR4 (baseline: 0.59±0.16 vs. 3d: 2.06±1.42; P=0.034), with a parallel higher level of mobilisation of CD34+ cells (IP: 881±126 vs. AMI: 668±180; P=0.026), compared to non-conditioned AMI. In vitro, CD34+ cell migration toward cardiomyocytes was enhanced by SDF-1α, which was completely abolished by 90min hypoxia and co-incubation with MMP-2. Conclusions. Non-conditioned AMI induces MMP-2 release, hampering the ischemia-induced increase in SDF-1α and CXCR4 by cleaving the SDF-1α/CXCR4 axis, with diminished mobilization of the angiogenic CD34+ cells. IP enforces CD34+ cell mobilization via inhibition of MMP-2.

Highlights

  • Heart regeneration after ischemic insult is still a matter of debate in spite of extensive research conducted in this field

  • We have investigated the mobilization of bone marrow (BM)-origin CD34+ cells 3 days after reperfused acute myocardial infarction (AMI) in relation to the SDF-1α/CXCR4 axis

  • AMI-induced cytokine release and CD34+ mobilization As shown by the control group, reperfused AMI induced a significant increase in the circulating level of CXCR4 with parallel significant mobilization of CD34+ cells

Read more

Summary

Introduction

Heart regeneration after ischemic insult is still a matter of debate in spite of extensive research conducted in this field. One of the endogenous cardiac repair mechanisms is the mobilization of regenerative cells derived from bone marrow (BM), followed by migration and homing of the cells in the ischemic myocardial tissue[1]. Several factors have been identified that play a role in the mobilization of BM-origin stem and progenitor cells, and assist in migration and homing, such as chemotactic factors, complement fractions, cytokines, microRNAs or microvesicles Among these substances, the axis of the stromal-derived factor-1 alpha [SDF-1α; chemokine receptor 12 (CXCL12)] and chemokine receptor type 4 (CXCR4) exerts the strongest chemoattractant stimulus for migration and homing of cells in the BM and tumors, and in ischemic tissues, such in case of myocardial ischemia or ischemic stroke[2]. Mobilization of bone marrow-origin CD34+ cells was investigated 3 days (3d) after acute myocardial infarction (AMI) with/without ischemic preconditioning (IP) in relation to stromal-derived factor-1 (SDF-1α)/ chemokine receptor type 4 (CXCR4) axis, to search for possible mechanisms behind insufficient cardiac repair in the first days post-AMI. Non-conditioned AMI induces MMP-2 release, hampering the ischemia-induced increase in

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call