Abstract

Voltage-gated, CaV2.3 calcium channels and neurokinin-1 (NK1) receptors are both present in nuclei of the central nervous system. When transiently coexpressed in human embryonic kidney (HEK) 293 cells, CaV2.3 is primarily inhibited during strong, agonist-dependent activation of NK1 receptors. NK1 receptors localize to plasma membrane rafts, and their modulation by Gq/11 protein-coupled signaling is sensitive to plasma membrane cholesterol. Here, we show that inhibition of CaV2.3 by NK1 receptors is attenuated following methyl-β-cyclodextrin (MBCD)-mediated depletion of membrane cholesterol. By contrast, inhibition of CaV2.3 was unaffected by intracellular diffusion of caveolin-1 scaffolding peptide or by overexpression of caveolin-1. Interestingly, MΒCD treatment had no effect on the macroscopic biophysical properties of CaV2.3, though it significantly decreased whole-cell membrane capacitance. Our data indicate that (1) cholesterol supports at least one component of the NK1 receptor-linked signaling pathway that inhibits CaV2.3 and (2) caveolin-1 is dispensable within this pathway. Our findings suggest that NK1 receptors reside within non-caveolar membrane rafts and that CaV2.3 resides nearby but outside the rafts. Raft-dependent modulation of CaV2.3 could be important in the physiological and pathophysiological processes in which these channels participate, including neuronal excitability, synaptic plasticity, epilepsy, and chronic pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.