Abstract

Human immunodeficiency virus 1 (HIV-1) infects blood monocytes that cross the blood-brain barrier to the central nervous system, inducing neuronal damage. This is prompted by the secretion of viral and neurotoxic factors by HIV-infected macrophages, resulting in HIV-associated neurocognitive disorders. One of these neurotoxic factors is cathepsin B (CATB), a lysosomal cysteine protease that plays an important role in neurodegeneration. CATB interacts with the serum amyloid P component (SAPC), contributing to HIV-induced neurotoxicity. However, the neuronal apoptosis pathways triggered by CATB and the SAPC remain unknown. We aimed to elucidate these pathways in neurons exposed to HIV-infected macrophage-conditioned media before and after the inhibition of CATB or the SAPC with antibodies using tandem mass tag proteomics labeling. Based on the significant fold change (FC) ≥ |2| and p-value < 0.05 criteria, a total of 10, 48, and 13 proteins were deregulated after inhibiting CATB, SAPC antibodies, and the CATB inhibitor CA-074, respectively. We found that neurons exposed to the CATB antibody and SAPC antibody modulate similar proteins (TUBA1A and CYPA/PPIA) and unique proteins (LMNA and HSPH1 for the CATB antibody) or (CFL1 and PFN1 for the SAPC antibody). CATB, SAPC, or apoptosis-related proteins could become potential targets against HIV-induced neuronal degeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.