Abstract
Catecholestrogens have been postulated to mediate the induction of kidney tumors by estradiol in male Syrian hamsters. In this study, we examined the mechanism of inhibition by quercetin of the catechol O-methyltransferase-catalyzed O-methylation of catecholestrogens as a basis for the previously reported enhancement of estradiol-induced tumorigenesis by this flavonoid. In hamsters treated with 50 micrograms of [6,7-3H]estradiol, quercetin increased concentrations of 2- and 4-hydroxyestradiol in kidney by 80 and 59%, respectively. In animals treated with two 10-mg estradiol implants, quercetin also decreased by 63-65% the urinary excretion of 2- and 4-hydroxyestradiol monomethyl ethers. Taken together, these results demonstrate the in vivo inhibition of the O-methylation of catecholestrogens by quercetin. S-Adenosyl-L-homocysteine, produced by the methylation of catecholestrogens, noncompetitively inhibited the O-methylation of 2- and 4-hydroxyestradiol by hamster kidney cytosolic catechol O-methyltransferase (IC50 approximately 10-14 microM). Due to the rapid O-methylation of quercetin itself, quercetin decreased renal concentrations of S-adenosyl-L-methionine by approximately 25% in control or estradiol-treated hamsters and increased concentrations of S-adenosyl-L-homocysteine by 5-15 nmol/g of wet tissue, which was estimated to cause a 30-70% inhibition of the enzymatic O-methylation of catecholestrogens. Quercetin or fisetin (a structural analog) inhibited the O-methylation of 2- and 4-hydroxyestradiol by a competitive plus noncompetitive mechanism (IC50 approximately 2-5 microM). These results suggest that the in vivo O-methylation of catecholestrogens is inhibited more by S-adenosyl-L-homocysteine than by quercetin. The accumulation of 2- and 4-hydroxyestradiol during co-administration of estradiol and quercetin may enhance metabolic redox cycling of catecholestrogens and thus estradiol-induced kidney tumorigenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.