Abstract

In Arabidopsis thaliana cells, fusicoccin (FC) treatment induced an early and marked increase in the extracellular H(2)O(2) level. It also increased the huge hypo-osmotic stress-induced oxidative wave and, in addition, prevented the H(2)O(2) peak drop. These effects were apparently not linked to changes in either cytoplasmic pH or cytoplasmic free calcium concentration, since they occurred independently of the activity state of the plasma membrane (PM) H(+)-ATPase and neither influx nor efflux of (45)Ca(2+) was modified by FC. In the presence of diphenylene iodonium (DPI), inhibiting the PM NADPH oxidase presumably responsible for reactive oxygen species (ROS) production, no apoplastic H(2)O(2) development was detected either with or without FC. However, no increase in DPI-sensitive ferricyanide reduction, but rather a gradual decrease, occurred with FC. These results suggested that the H(2)O(2) increase observed with FC was not due to a overproduction of ROS but, more probably, to a reduced capability of FC-treated cells to degrade the H(2)O(2) formed. This view, at first supported by the finding that FC-treated cells failed to break down exogenously supplied H(2)O(2), was clearly confirmed by a series of measurements on exogenous catalase activity, tested in cell-free media of FC-treated samples. This assay, in fact, allowed ascertainment and partial characterization of an as yet unidentified factor increasingly accumulating in the incubation medium of FC-treated cells, behaving as a non-competitive catalase inhibitor and able to reduce markedly the cell's capability for H(2)O(2) scavenging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call