Abstract

Evidence has implicated apoptosis as a mechanism underlying cell death in diverse neurodegenerative diseases including Parkinson's disease (PD). Endogenous agents such as TNF-alpha, INF-gamma, IL-1beta and others stress signals activate the sphingomyelin pathway increasing ceramide levels. Ceramide triggers apoptotic pathways while inhibiting survival signalling, and is involved in the regulation of intracellular Ca(2+) homeostasis and compartmentalisation. The contribution of caspases in neuronal apoptosis has been highlighted by the increased survival exerted by caspase inhibition, but the involvement of calpains during neuronal apoptosis and the potential benefit of their inhibition is still controversial. In the present paper, we have analysed the contribution of caspases and calpains to cell death of CAD cells, a catecholaminergic cell line of mesencephalic origin, following C2-ceramide exposure. Ceramide caused CAD cell death by a dose and time dependant mechanism. 25microM of C2-ceramide caused apoptosis. Analysis of activation of caspases and calpains by differential cleavage of alpha-fodrin showed that although calpains are activated before caspases following C2-ceramide exposure, only caspase inhibition increased cell survival. These results demonstrate the activation of caspases and calpains in C2-ceramide-induced cell death, and support the role of caspase inhibition as a neuroprotective strategy and a plausible therapeutic approach to decrease catecholaminergic cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.