Abstract

Human aldose reductase (hAR) is the key enzyme in sorbitol pathway of glucose utilization and is implicated in the etiology of secondary complications of diabetes, such as, cardiovascular complications, neuropathy, nephropathy, retinopathy, and cataract genesis. It reduces glucose to sorbitol in the presence of NADPH and the major cause of diabetes complications could be the change in the osmotic pressure due to the accumulation of sorbitol. An activated form of hAR (activated hAR or ahAR) poses a potential obstacle in the development of diabetes drugs as hAR-inhibitors are ineffective against ahAR. The therapeutic efficacy of such drugs is compromised when a large fraction of the enzyme (hAR) undergoes conversion to the activated ahAR form as has been observed in the diabetic tissues. In the present study, attempts have been made to employ systems biology strategies to identify the elementary nodes of human polyol metabolic pathway, responsible for normal metabolic states, followed by the identification of natural potent inhibitors of the activated form of hAR represented by the mutant C298S for possible antidiabetic applications. Quantum Mechanical Molecular Mechanical docking strategy was used to determine the probable inhibitors of ahAR. Rosmarinic acid was found as the most potent natural ahAR inhibitor and warrants for experimental validation in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.