Abstract
We report on bubble coalescence inhibition by non-surface-active, nonelectrolytes urea and sucrose, and other small sugars, in aqueous solution. Urea has no effect on bubble stability up to high concentrations>1 M, while sucrose inhibits coalescence in the range 0.01-0.3 M, similar to inhibiting electrolytes. Urea and sucrose both increase bubble coalescence inhibition in inhibiting and noninhibiting electrolytes in a cooperative manner, but urea decreases the efficacy of sucrose in mixed solutions. Several mono- and disaccharides also inhibit bubble coalescence at approximately 0.1 M, and the sugars vary in effectiveness. Disaccharides are more effective than the sum of their individual monosaccharide constituents, and sugars with very similar structures (for instance, diastereomers galactose and mannose) can show large differences in coalescence inhibition and hence thin film stability. We conclude that solute charge is not required for bubble coalescence inhibition, which indicates that the mechanism is not one of electrostatic surface repulsion and instead an effect on dynamic film thinning other than Gibbs-Marangoni elasticity is implicated. Solute structure is important in determining coalescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Langmuir
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.