Abstract
p16-mediated inhibition of cancer cell proliferation and tumor suppression have been studied before,; the common consensus is that p16's cell-cycle arrest function plays a primary role in these actions, with some additional apoptotic induction by p16. However, other effects of p16 that may potentially contribute to p16-mediated anti-tumor ability have not been well studied. The emerging data including ours indicated that p16 contributes its anti-cancer ability by inducing tumor cells to senescence. Moreover, we showed that p16 inhibits breast cancer cell growth by inhibiting the VEGF signaling pathway and angiogenesis. In this study, we used adenoviral-mediated p16 expression (AdRSVp16) and breast cancer cell line MDA-MB-231 as the model to simultaneously analyze all these p16's anti-tumor functions. We demonstrated that adenoviral-mediated p16 expression exhibited multiple anti-tumor functions by simultaneously suppressing in vitro growth and in vivo angiogenesis of breast cancer cells, blocking cell division, as well as inducing senescence and apoptosis. The in vivo study implies that p16's effect on anti-angiogenesis may play a more significant role than its anti-cell proliferation in the overall suppression of tumor growth. These results suggest, for the first time, that AdRSVp16-mediated tumor suppression results from a combination of p16's multiple anti-tumor functions including p16's well-known anti-proliferation/cell division function, apoptotic and senescence induction function, and its lesser-known/under-investigated anti-angiogenesis function. These combined results strongly indicate that p16 gene therapy has a multi-module platform with different anti-tumor functions; therefore, this study justifies and promotes the viral-mediated p16 gene therapy as a promising and powerful treatment approach for cancer patients due to p16's multiple anti-tumor functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.