Abstract

In this study, the effect of thymoquinone on morphine-induced tolerance and dependence in mice was investigated. Repeated administration of thymoquinone along with morphine attenuated the development of morphine tolerance, as measured by the hot plate test, and dependence, as assessed by naloxone-precipitated withdrawal manifestations. Concurrently, morphine-induced progressive increase in brain malondialdehyde (MDA) level and nitric oxide (NO) production as well as progressive decrease in brain intracellular reduced glutathione (GSH) level and glutathione peroxidase (GSH-Px) activity were inhibited by co-administration of thymoquinone. Morphine-induced progressive increase in brain glutamate level was not inhibited by concomitant administration of thymoquinone. Similarly, co-administration of thymoquinone inhibited naloxone-induced increase in brain MDA level, NO overproduction and decrease in brain intracellular GSH level and GSH-Px activities but it did not inhibit naloxone-induced elevation of brain glutamate level in morphine-dependent mice. The inhibitory effect of thymoquinone on morphine-induced tolerance and dependence on naloxone-induced biochemical alterations in morphine-dependent mice was enhanced by concurrent i.p. administration of the NMDA receptor antagonist, dizocilpine, the antioxidant, N-acetylcysteine or the NO synthase inhibitor, L-N (G)-nitroarginine methyl ester. On the other hand, this inhibitory effect of thymoquinone was antagonized by concurrent i.p. administration of NO precursor, l-arginine. In addition, concomitant administration of thymoquinone inhibited morphine tolerance and dependence-induced increase in inducible but not in neuronal NO synthase mRNA expression in mice brain. These results demonstrate that inhibition of morphine-induced oxidative stress, increase in the expression of brain inducible NO synthase and NO overproduction by thymoquinone can attenuate the development of morphine tolerance and dependence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call