Abstract

Pseudomonas aeruginosa is a potent biofilm forming organism causing several diseases on host involving biofilm. Several natural and synthetic molecules have been explored towards inhibiting the biofilm formation of Pseudomonas aeruginosa. In the current report, the role of a natural molecule namely caffeine was examined against the biofilm forming ability of P. aeruginosa. We have observed that caffeine shows substantial antimicrobial activity against P. aeruginosa wherein the minimum inhibitory concentration (MIC) of caffeine was found to be 200μg/mL. The antibiofilm activity of caffeine was determined by performing a series of experiments using its sub-MIC concentrations (40 and 80μg/mL). The results revealed that caffeine can significantly inhibit the biofilm development of P. aeruginosa. Caffeine has been found to interfere with the quorum sensing of P. aeruginosa by targeting the swarming motility. Molecular docking analysis further indicated that caffeine can interact with the quorum sensing proteins namely LasR and LasI. Thus, the result indicated that caffeine could inhibit the formation of biofilm by interfering with the quorum sensing of the organism. Apart from biofilm inhibition, caffeine has also been found to reduce the secretion of virulence factors from Pseudomonas aeruginosa. Taken together, the results revealed that in addition to biofilm inhibition, caffeine can also decrease the spreading of virulence factors from Pseudomonas aeruginosa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call