Abstract

The chemopreventive potential of cycloartenol on benzoyl peroxide and UVB radiation-induced cutaneous tumor promotion markers and oxidative stress in murine skin is assessed. Benzoyl peroxide treatment (20 mg/animal/0.2 ml acetone) and UVB radiation (0.420 J/m2/s) caused a decrease in the activities of cutaneous antioxidant enzymes namely, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, phase II metabolizing enzyme such as glutathione-S-transferase and quinone reductase and depletion in the level of cutaneous glutathione. There was also enhancement in cutaneous microsomal lipid peroxidation, xanthine oxidase activity, [14C]-ornithine decarboxylase activity and [3H]-thymidine incorporation into cutaneous DNA. Cycloartenol was topically applied prior to the application of benzoyl peroxide at dose levels of 0.2 mg and 0.4 mg/kg body weight in acetone, which resulted in significant inhibition of epidermal ornithine decarboxylase activity and DNA synthesis (P < 0.001). There was also significant reduction of lipid peroxidation and xanthine oxidase activity (P < 0.001). In addition, the depleted levels of glutathione, inhibited activities of antioxidant and phase II metabolizing enzymes, were also recovered to a significant level (P < 0.001). The data indicate that cycloartenol is an effective chemopreventive agent in skin carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call