Abstract

The motility of bacteria plays a key role in their colonization of surfaces during infection. Derivatives of cranberry fruit have been shown to interfere with bacterial motility. Herein, we report on the incorporation of cranberry derived materials (CDMs) into silicone substrates with the aim of impairing bacterial pathogen motility and spreading on the substrate surface. The release of CDMs from the silicone substrates when soaking in an aqueous medium was quantified for a period of 24h. Next, we showed that CDMs released from two silicone substrates remain bioactive as they downregulate the expression of the flagellin gene of two key uropathogens – Escherichia coli CFT073 and Proteus mirabilis HI4320. Furthermore, we demonstrate that CDM-modified silicone inhibits the swarming motility of P. mirabilis, an aggressive swarmer. The bioactive, CDM-modified substrates can find broad applications in the medical device and food industries where the impairment of bacterial colonization of surfaces is of paramount importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.