Abstract
Antibiotic resistance is a challenge for the control of bacterial infections. In an effort to explore unconventional avenues for antibacterial drug development, we focused on the FMN-transferase activity of the enzyme Ftp from the syphilis spirochete, Treponema pallidum (Ftp_Tp). This enzyme, which is only found in prokaryotes and trypanosomatids, post-translationally modifies proteins in the periplasm, covalently linking FMN (from FAD) to proteins that typically are important for establishing an essential electrochemical gradient across the cytoplasmic membrane. As such, Ftp inhibitors potentially represent a new class of antimicrobials. Previously, we showed that AMP is both a product of the Ftp_tp-catalyzed reaction and an inhibitor of the enzyme. As a preliminary step in exploiting this property to develop a novel Ftp_Tp inhibitor, we have used structural and solution studies to examine the inhibitory and enzyme-binding properties of several adenine-based nucleosides, with particular focus on the 2-position of the purine ring. Implications for future drug design are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Protein science : a publication of the Protein Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.