Abstract

The glial scar that forms at the site of injury is thought to be a biochemical and physical barrier to successful regeneration, although the molecules responsible for this barrier function are not well understood. Glia scars contain large numbers of oligodendrocyte precursor cells (OPCs) and these cells can produce several different growth-inhibitory chondroitin sulfate proteoglycans (CSPGs), including NG2, neurocan, and phosphacan. Here, we used membrane-based assays to show that the surface of OPCs is both nonpermissive and inhibitory for neurite outgrowth. Inhibition of growth by OPC is reversed by treatment with antibodies against the NG2 CSPG and the expression of NG2 is sufficient to change a growth-permissive cell surface to a nonpermissive surface. These result suggest that the OPCs that accumulate rapidly at sites of CNS injury can contribute to the creation of an environment that inhibits nerve regeneration and that NG2 is a necessary feature of that environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call